Optical Metamaterials

Vladimir M. Shalaev Purdue University

PURDUE

College of Engineering

Outline

- Electrical Metamaterials (Plasmonics): A Route to Nanophotonics
- Optical Metamagnetics
- Negative-Index Metamaterials
- Active and Loss-Free Metamaterials
- New Plasmonic Materials
- Chiral Metamaterials
- Metamaterials for Sensing
- * Nonlinear, Tunable, and Ultrafast Metamaterials
- Quantum Optics with Metamaterials
- Transformation Optics , Cloaking, and "Multiverse"

Generalized Snell's Law and Light Bending with Nanoantennas

Electrical Metamaterials (Plasmonics): a route to nanophotonics

College of Engineering

Why nanophotonics needs plasmonic/electric ε-MMs ?

- Plasmonics will enable an improved synergy between electronic and photonic devices
 - Plasmonics naturally interfaces with similar size electronic components
 - Plasmonics naturally interfaces with similar operating speed photonic networks

Brongersma, Shalaev, Science (2010)

Optical Antennae: Focusing Light to Nanoscale

OE (2009); NJP (2008); Metamaterials (2008); APL (2008)

[Bow-tie antennas] $\begin{bmatrix} y & 50 \\ y & 50 \\ x \\ y & 50 \\ x \\ b \end{bmatrix}$

from LC-contour to nanophotonic circuits (Engheta – 'metatronics')

Other Applications: Sensors

Other nanoantenna work: van Hulst; Polman; Brongersma; Capasso; Sandoghdar...

PURDUE UNIVERSITY

Graphene-Based Optical Modulator

Guided light is electrically modulated in a broad spectral range of 1.35-1.6 m by controlling the interband transitions in graphene.

College

of Engineering

Optical Nanolaser Enabled by SPASER NSU-Purdue-Cornell; *Nature* (2009)

Hybrid Nanoparticle

College of Engineering

World's Smallest Nanolaser (NSU-Purdue-Cornell)

Noginov,... Shalaev, et al, Nature (2009)

Stimulated emission spectra at different pumps by OPO pulses at λ =488 nm Optical MOSFET

College

^{of} Engineering

also: Zhang's group nanolaser Nature (2009)

Optical Nanolaser Enabled by SPASER

MgF

<u>Related prior theory</u>: _____Stockman (SPASER)

Noginov, Shalaev, Wiesner groups, Nature (2009)

Zhang group: Plasmon Laser (Nature,2009) Room-T Plasmon Laser (Nat. Mat, 2010)

"Spasing Laser" – Zheludev, Stockman

M. T. Hill, et al; C. Z. Ning, et al (electr. pump)

Spotlight on Plasmon Lasers (Perspective, Science, 2011)- X. Zhang, et al

^{of} Engineering

College

PURDUE

Fabrication of Metamaterials

College of Engineering

Progress in Large-Scale & 3D Fabrication

College ^{of} Engineering

PURDUE

UNIVERSITY

Metamagnetics for optical range

College of Engineering

Artificial Magnetic Metamaterials for Visible

Nanorod pair

Nanorod pair array

Nanostrip pair

Nanostrip pair has a much stronger magnetic response

Podolskiy, Sarychev & Shalaev, *JNOPM* (2002) - μ < 0 & n < 0 Lagar'kov, Sarychev PRB (1996) - μ > 0 Kildishev et al, *JOSA B* (2006); Shvets et al (2006) – strip pairs *Zheludev et al (2001) – pairs of rods for chirality*

Visible Meta-Magnetics: from Red to Blue

14

 λ_m as a function of strip width "w": experiment vs. theory

College of Engineering

Optical Negative-Index Metamaterials

College of Engineering

Negative refractive index: A historical review

Sir Arthur Schuster

Sir Horace Lamb

... energy can be carried forward at the group velocity but in a direction that is anti-parallel to the phase velocity...

Schuster, 1904

Negative refraction and backward propagation of waves

Mandel'stam, 1945

L. I. Mandel'stam

V. G. Veselago

Others: Sivukhin. Agranovich,...

College

^{of}Engineering

Left-handed materials: the electrodynamics of substances with simultaneously negative values of ϵ and μ

Veselago, 1968

Pendry, the one who whipped up the recent boom of NIM researches

Perfect lens (2000) EM cloaking (2006)

Sir John Pendry

Metamaterials with Negative Refraction

• Refraction:

- $n^2 = \varepsilon \mu$ $n = \pm \sqrt{\varepsilon \mu}$
- Figure of merit: F = |n'| / n''

$$n < 0$$
, if $\varepsilon' \mid \mu \mid + \mu' \mid \varepsilon \mid < 0$

<u>Single-negative:</u>

n < 0, when $\varepsilon' < 0$ whereas $\mu' > 0$ (F is low)

Double-negative: n < 0, with both $\varepsilon' < 0$ and $\mu' < 0$ (F can be large)

College of Engineering

Negative Permeability and Negative Permittivity

S. Zhang, et al., PRL (2005)

Negative Index for Yellow Light (n'=-0.25, FOM=0.3, at 580 nm)

Xiao et al, OL (2009)

Periodicity, E: 220 nm; H: 220 nm

Stacking:

8 nm of Al_2O_3 43 nm of Ag 45 nm of Al_2O_3 43 nm of Ag 8 nm of Al_2O_3

Negative Refractive Index in Optics

Year and Research group	1st time posted and publication	Refractive index, n′	Wavelength, λ	Figure of Merit F= n′ /n″	Structure used
2005					
Purdue	April 13 (2005) arXiv:physics/0504091 Opt. Lett. (2005)	-0.3	1.5 μm	0.1	Paired nanorods
UNM & Columbia	April 28 (2005) arXiv:physics/0504208 Phys. Rev. Lett. (2005)	-2	2.0 μm	0.5	Nano-fishnet with round voids
2006					
UNM & Columbia	J. of OSA B (2006)	-4	1.8 μm	2.0	Nano-fishnet with round voids
Karlsruhe & ISU	OL. (2006)	-1	1.4 μm	3.0	Nano-fishnet
Karlsruhe & ISU	OL (2006)	-0.6	780 nm	0.5	Nano-fishnet
Purdue	MRS Bulletin (2008)	-0.8 -0.6	725nm 710nm	1.1 0.6	Nano-fishnet
Purdue	OL (2009)	-0.25	580nm	0.3	Nano-fishnet

CalTech (Atwater): negative refraction in the visible for MIM waveguide SPPs (2007)

Active Negative-Index Metamaterials

College of Engineering

Active Metamaterials (Experiments)

Arrays of Ag split-ring resonators coupled to InGaAs single-auantum-well gain

٠

^{of}Engineering

Structure and Fabrication Process

College of Engineering

FESEM Images

PURDUE UNIVERSITY College

of Engineering

After etching the spacer

Loss Free NIMs

Optical NIM with Negative Absorptance

- wavelength range for negative n': 720 nm 760 nm
- wavelength for negative absorptance: ~720 nm 740 nm

Toward Better Materials for Negative Refraction

(Boltasseva group)

Challenges

Conventional plasmonics: Gold and Silver

- Large losses in near-IR and visible ranges
- Interband transitions
- Surface roughness, grain boundaries, etc...

Stefan Maier, Plasmonic Fundamentals and Applications p. 17 (Drude model fit) (2007)

JE of Engineering

New plasmonic materials METALS TO LESS-METALS:

Doped semiconductors + Intermetallics (nitrides, borides, silicides, ...)

A. Boltasseva and H.A. Atwater, Science 331 (2011)

College of Engineering

Alternative Plasmonic Materials

www.lpr-journal.org

College

^{of} Engineering

LASER & PHOTONICS REVIEWS Searching for better plasmonic materials 420 IL FY-VCH

P. West, et al, Lasers & Photon. Rev. (2010) (Boltasseva group)

(see also work the Neginay group)

Vol. 4 No. 6 November 2010

Titanium Nitride

Metallic: Golden luster

Hard & tough: high speed drill-bits

Well-established processing

G.V. Naik et al., Optical Materials Express 2 (2012) p. 478

Titanium Nitride

Figure of Merit of Hyperlens

@ 1.55 μm

Wavelength (µm)

Performance of **HMM devices**:

(A. Hoffman, Nature Materials 6(2007) 946-950)

$FOM=Re\{k_{\perp}\}/Im\{k_{\perp}\}$

College

Purdue

G..V. Naik and A. Boltasseva, Metamaterials 5(2011) 1-7

^{of} Engineering

Phys. Status Solidi RRL 4, 295 (2010)

Negative Refraction in all-Semiconductor based HMM

College

of Engineering

Е

Negative refraction in semiconductor-based metamaterials

- Semiconductors exhibit metallic properties when heavily doped
- Aluminum doped zinc oxide (AZO) exhibits metallic property in the near-infrared
- Conventional metals replaced by semiconductor-based ones such as AZO can produce high performance metamaterials
- The figure-of-merit of AZO/ZnO metamaterial is 11: three orders higher than metal-based designs

G. Naik, et al. PNAS (2012) (Boltasseva /Shalaev groups)

College of Engineering

Chiral Metamaterials

College of Engineering

Chiral Metamaterials

Coupling effect between E-field and M-field (Chirality parameter[κ])

$$\begin{pmatrix} D \\ B \end{pmatrix} = \begin{pmatrix} \varepsilon_0 \varepsilon & -\frac{i\kappa}{c} \\ \frac{i\kappa}{c} & \mu_0 \mu \end{pmatrix} \begin{pmatrix} E \\ H \end{pmatrix}$$

Right circularly polarized (RCP) / Left circularly polarized (LCP)

 $k \pm k_0 (n \pm \kappa)$ $n \pm n \pm \kappa$

<Negative index refraction>

without negative permittivity (<)

/negative permeability (μ)

- Chirality parameter (κ) > $\sqrt{\epsilon\mu}$
- Refractive index for the LCP ⇒ negative

 $k_{-} < 0, n_{-} < 0,$

E. Plum, et al, Phys. Rev. (2009) / Zheludev's group

College of Engineering

3-D Chiral Metamaterials

[Fabrication process]

College

^{of}Engineering

Purdue

[SEM images]

- A Cross view
- B Till angle view
- C Top view

J. K. Gansel, et al, Science (2009) / Wegener group
Metamaterials for Sensing

College of Engineering

Metamaterials for Sensing

Graphene+metamaterial for sensing

Papasimakis, et al, OE (2010) (Zheludev group)

Hyperbolic Metamaterials for Biosensing

More than <u>100 times</u> sensitive than other SPR based sensors

A. V. Kabashin, et al, Nature Mat. (2009) (Zayats group with Podolskiy)

College of Engineering

Nanoslit Lenses

Key author: Satoshi Ishii (see his poster)

Nanoslit lenses (TM-lens & TE-lens)

College ^{of}Engineering

Purdu

Experimental demonstrations of nanoslit lenses

Polarization selective design

^{of}Engineering

Liquid crystal controlled lenses

S. Ishii, A. V. Kildishev, V. M. Shalaev and V. P. Drachev, Laser Phys. Lett. **8**, 828-832 (2011) (cover page article)

Negative-Index Metamaterials and Nonlinear Optics

• Three-dimensional optical metamaterial with a negative refractive index

(Zhang group, Nature. 455, 376 (2008)

College ^{of}Engineering

Backward Waves in Nonlinear NIMs

Backward Waves in NIMs: Popov and Shalaev (APB, 2006), Popov, Slabko, and Shalaev (LPL, 2006) [Others groups: Kivshar, Shadrivov, et al; Zakhidov, Agranovich, et al; AKP and Myslevets]

Second Harmonic generation in a Phase-Matched NIM

Experimental setup

R. SH enhancement (nonlinear optical mirror)

A. Rose, et al, PRL (2011) (Smith Group)

College of Engineering

Tunable, Ultrafast, & Nonlinear Metamaterials

PURDUE UNIVERSITY College of Engineering

Tunable MMs with Phase Change Components

Electrically controllable memory with VO₂

(a) T. Driscol, et al, Science, (2009) (Smith and Basov)
(b) M. J. Dicken, et al, OE (2009) (Atwater group)
(c) Sámson, et al, APL, (2010) (Zheludev group)

Tunable Metamaterials

of Engineering

Ultrafast Active Plasmonics

- SPP propagation influenced by optical pump
- Sub-ps control on SPPs

K. F. MacDonald, et al, Nature Photon. (2008) (Zheludev group and Stockman)

College of Engineering

Nonlinear Materials + Metamaterials

Carbon nanotubes + MM

Metamaterial lattice period (b) 495 nm (a) E 348 Tungsten cup layer 102 nm Si₁N₄ layer r imaging only) (a) 20 to 70 nm CNT layer Ē, 65 nm gold layer 1000 1200 CNTs @MM 10 x A, response 6 Light-induced change of transmission D= 839nm (c) ******* 3 Re(s) D= 817nm ************* D= 784nm 1000 1200 D= 780nm 10 x CNTs (e) 3.0 @ Si, N, D= 731nm response Re(µ_{eff}) 1400 1500 1600 1700 1800 1900 2000 2100 2200 1600 1800 2000 2200 -1. Wavelengths, nm Wavelengths, nm 1000 1200

 α -Si+ MM

(b) D. J. Cho, et al, OE (2009) (Bratkovsky-Zhang-Shen groups)

College of Engineering

J.-Y. Kim, G. V. Naik, Z. Jacob, V. P. Drachev, Alexandra Boltasseva, Evgenii E. Narimanov and Vladimir M. Shalaev

52

HYPERBOLIC DISPERSION

"Regular" dielectric

$$\frac{k_x^2}{\epsilon_y} + \frac{k_y^2}{\epsilon_x} = \frac{\omega^2}{c^2}$$

"Strongly Anisotropic" media

$$\frac{k_x^2}{\epsilon_y} + \frac{k_y^2}{\epsilon_x} = \frac{\omega^2}{c^2}$$

Special case of "Indefinite Media", D.Smith et al, 2003

'STRONGLY ANISOTROPIC' MEDIA

College

^{of}Engineering

Purdue

- Unlimited wavenumbers
- "Infinite" refractive index
- No diffraction limit for imaging

Z. Jacob et. al, Opt. Express (2007), Hyperlens

'STRONGLY ANISOTROPIC' MEDIA

- Unlimited wavenumbers
- "Infinite" refractive index
- No diffraction limit for imaging
- HYPERLENS

Theory : E.Narimanov et al, N. Engheta et at, 2006 Experiment : X. Zhang et al, 2007

PDOS in hyperbolic metamaterial?

Singularity in density of states!!!!

- Hyperbolic dispersion supports high spatial wavevectors compared to vacuum
- Large contribution to DOS from the "high k" states (think beyond imaging!)

PHOTONIC DENSITY OF STATES (PDOS)

$$\rho(\omega) = \frac{dN}{d\omega}$$

 $N(\omega)$ - number of states with frequency below ω

$$k_{x}^{2} + k_{y}^{2} + k_{z}^{2} = \varepsilon \frac{\omega^{2}}{c^{2}}$$

Free space :

$$\rho(\omega) \sim \omega^2$$

PHOTONIC DENSITY OF STATES (PDOS)

College of Engineering

QED IN THE 'HYPERSPACE'

- Rate of SE, can be understood as property of atom-environment system
- Environment (cavity, PhC, nanowire) enhances density of states

Environment strongly alters the rate of SE through the available PDOS!

Research Goals I

Design 1. Shalaev's group: Stacked metal-dielectric layer ε_x , $\varepsilon_y < 0$, $\varepsilon_z > 0$ $\varepsilon_{\perp} = 12.5+0.5i$ $\varepsilon_{||} = -8.2+0.9i$ Applied Physic B 2010

Design 2. Noginov's group: Silver nanowire ε_x , $\varepsilon_y > 0$, $\varepsilon_z < 0$ $\varepsilon_{\perp} = -0.15 + 1.07i$ $\varepsilon_{||} = 4.99 + 0.22i$ Optics Letters 2010

Engineering the photonic density of states using hyperbolic metamaterials

- Electromagnetic vacuum (spontaneous emission) engineering
- Thermal radiation engineering
- nanoscale control of thermal radiation

EMISSION POWER SPECTRUM

Transformation Optics

V. M. Shalaev, Transforming Light, Science, Oct. 17, 2008

College of Engineering

Designing Space for Light with Transformation Optics

Pendry et al., Science, 2006 Leonhard, Science, 2006 Greenleaf et al (2003) L. S. Dolin, Izv. VUZ, 19614

Purdue

College

^{of} Engineering

- Spatial profile of ε & μ tensors determines the distortion of coordinates
- Seeking for profile of ε & μ to make light avoid particular region in space — optical cloaking

Trapping and Manipulating Light

Narimanov, Kildishev

Engineering Meta-Space for Light: via Transformation Optics

Kildishev, VMS (OL, 2008); Shalaev, Science 322, 384 (2008)

(Kildishev and VMS) (Schurig et al; Zhang group)

College

of Engineering

Purdue

(also, Schurig et al)

(Zhang group; Narimanov, Kildishev)

Examples with scientific elements:

> The Invisible Man by H. G. Wells (1897)

College of Engineering "The invisible woman" in The Fantastic 4

Invisible Carpet (ground-plane cloak)

College of Engineering

PURDUE

picture from discovery.com

Optical Mimicry

Progress Towards True Invisibility on May.17, 2009, under Science www.codingfuture.com

Theory: J. Li, J. Pendry GHz: Smith et al (Duke) Optical: Zhang et al (Berkeley) Lipson et al (Cornel)

College of Engineering

L. H. Gabrielli*, et al.*, *Nat. Photonics* **3**, p.461, Aug 2009. (M. Lipson group)

J. Valentine*, et al.*, *Nat. Mater.* **8**, p.568, Jul 2009. (X. Zhang group)

Blueprint of the 3D carpet-cloak structure

Target refractive index (*n*) distributions (top) and oblique-view electron micrographs of fabricated structures after FIB milling (bottom). (**A**) A bump without a cloak. (**B**) A bump with a cloak.

Optical characterization of the 3D structures with **unpolarized** light in bright-field mode.

- (A) A bump without a cloak. The bump is immediately visible.
- (B) (B) Result for a bump with a cloak that approaches the expectation for an ideal cloak (constant intensity).

T. Ergin, et al., Science 328, p. 337, Apr 16 2010. (M. Wegener group)

College of Engineering

Macroscopic Cloaking Based on Calcite

B. Zhang, et al, arXiv:1012.2238 (Singapore-MIT)

Space-time Cloak – History Editor

Star Trek transporter

M. W. McCall and et al., *Journal of Optics*, 2011. Experiment: Gaeta et al Nature (2012)

Purdue

Metamaterial "Multiverse" (Smolyaninov)

Using transformation optics we can create "optical spaces" having non-trivial topology, which cannot normally fit into Euclidean 3D space:

Even metric signature of the "optical space" may differ from the (+ - - -) signature of the Minkowski space. In hyperbolic materials (Smolyaninov, Narimanov – PRL, 2010):

$$\frac{\partial^{2} \varphi}{c^{2} \partial t^{2}} = \frac{\partial^{2} \varphi}{\varepsilon_{1} \partial z^{2}} + \frac{1}{\varepsilon_{2}} \left(\frac{\partial^{2} \varphi}{\partial x^{2}} + \frac{\partial^{2} \varphi}{\partial y^{2}} \right) \qquad \begin{array}{l} \varepsilon_{1} < 0\\ \varepsilon_{2} > 0 \\ \end{array}$$
$$\left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} - \frac{\partial^{2}}{\partial x_{3}^{2}} - \frac{\partial^{2}}{\partial x_{4}^{2}} \right) \varphi = 0 \qquad \text{2T K-G} \end{array}$$

College

^{of} Engineering

Modern cosmology describes Universe as collection of spaces connected by black holes and wormholes. These spaces may have different topology and different number of dimensions.

Flashes of light are observed during metric signature transitions : toy Big Bang physics

Generalized Snell's Law and Negative Refraction with Plasmonic Nanoantennas

PURDUE College

Principle of least action

Pierre Louis Maupertuis (1698-1759)

Maupertuis felt that **"Nature is thrifty in all its actions"**, and applied the principle broadly:

"The laws of movement and of rest deduced from this principle being precisely the same as those observed in nature, we can admire the application of it to all phenomena. The movement of animals, the vegetative growth of plants ... are only its consequences "

The action functional from point A to point B is

where **p** is the momentum, and **q** is the coordinate.

From the *principle of least action* the true path of a system from point A to point B is a **stationary point** of the functional.

It works for any physical system!

Leonhard Euler (1707-1783)

Principle of least action \rightarrow Fermat's principle

"Fermat's principle applied to phase waves is identical to Maupertuis' principle applied to the moving body; the possible dynamic trajectories of the moving body are identical to the possible rays of the wave."

Maupertuis' principle

Fermat's principle

Louis de Broglie (1892-1987)

 $\mathbf{p} = \hbar \mathbf{k}$

Generalized Snell's law (Capasso group)

⁺Landau and Lifshitz, The Classical Theory of Fields (4 ed.)

^{of}Engineering

College

Generalized Snell's law

N. Yu, et al. Science, 2011 (Capasso Group)

y-polarized incidence anomalous 2 ordinary reflection reflection θi $\boldsymbol{\theta}_{r,\parallel}$ gradient of phase delay θ shicon →X $\frac{d\Phi}{dx} < 0$ $\hat{\boldsymbol{\theta}}_{t, \perp}$ anomalous refraction ordinary refraction (g) 30 (ม²⁰ Г/8 Г/4 31/8 г/2 0 57/8 317/4 77/8 х

Birck Nanotechnology Center

PURDUE ^{of}Engineering

Generalized Snell's law: experimental demonstrations by Capasso group

N. Yu, et al. Science, 2011 (Capasso Group)

Birck Nanotechnology Center

College ^{of}Engineering

Purdue

Broadband light bending with plasmonic

nanoantennas

Full-wave simulation

of Engineering

Incident angle sweep – refraction

of Engineering

Incident angle sweep – reflection

College of Engineering

Broadband Negative Refraction

College of Engineering

Outline

- Electrical Metamaterials (Plasmonics): A Route to Nanophotonics
- Optical Metamagnetics
- Negative-Index Metamaterials
- Active and Loss-Free Metamaterials
- New Plasmonic Materials
- Chiral Metamaterials
- Metamaterials for Sensing
- * Nonlinear, Tunable, and Ultrafast Metamaterials
- Quantum Optics with Metamaterials
- Transformation Optics , Cloaking, and "Multiverse"

Generalized Snell's Law and Light Bending with Nanoantennas

Further reading

College of Engineering